Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 16(2)2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38350130

RESUMO

This study endeavors to investigate the progression, research focal points, and budding trends in the realm of skin bioprinting over the past decade from a structural and temporal dynamics standpoint. Scholarly articles on skin bioprinting were obtained from WoSCC. A series of bibliometric tools comprising R software, CiteSpace, HistCite, and an alluvial generator were employed to discern historical characteristics, evolution of active topics, and upcoming tendencies in the area of skin bioprinting. Over the past decade, there has been a consistent rise in research interest in skin bioprinting, accompanied by an extensive array of meaningful scientific collaborations. Concurrently, diverse dynamic topics have emerged during various periods, as substantiated by an aggregate of 22 disciplines, 74 keywords, and 187 references demonstrating citation bursts. Four burgeoning research subfields were discerned through keyword clustering-namely, #3 'in situbioprinting', #6 'vascular', #7 'xanthan gum', and #8 'collagen hydrogels'. The keyword alluvial map reveals that Module 1, including 'transplantation' etc, has primarily dominated the research module over the previous decade, maintaining enduring relevance despite annual shifts in keyword focus. Additionally, we mapped out the top six key modules from 2023 being 'silk fibroin nanofiber', 'system', 'ionic liquid', 'mechanism', and 'foot ulcer'. Three recent research subdivisions were identified via timeline visualization of references, particularly Clusters #0 'wound healing', #4 'situ mineralization', and #5 '3D bioprinter'. Insights derived from bibliometric analyses illustrate present conditions and trends in skin bioprinting research, potentially aiding researchers in pinpointing central themes and pioneering novel investigative approaches in this field.


Assuntos
Bioimpressão , Fibroínas , Dermatopatias , Humanos , Pele , Análise por Conglomerados
2.
Clin Chim Acta ; 529: 34-41, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149004

RESUMO

Accumulation of reactive oxygen species (ROS) can induce both protein tyrosine nitration and endothelial dysfunction in atherosclerosis. Endothelial dysfunction refers to impaired endothelium-dependent vasorelaxation that can be triggered by an imbalance in nitric oxide (NO) production and consumption. ROS reacts with NO to generate peroxynitrite, decreasing NO bioavailability. Peroxynitrite also promotes protein tyrosine nitration in vivo that can affect protein structure and function and further damage endothelial function. In this review, we discuss the process of protein tyrosine nitration, increased expression of nitrated proteins in cardiovascular disease and their association with endothelial dysfunction, and the interference of tyrosine nitration with antioxidants and the protective role in endothelial dysfunction. These may lead us to the conception that protein tyrosine nitration may be one of the causes of endothelial dysfunction, and help us gain information about the mechanism of endothelial dysfunction underlying atherosclerosis.


Assuntos
Aterosclerose , Tirosina , Humanos , Óxido Nítrico , Ácido Peroxinitroso/metabolismo , Proteínas
3.
Front Pharmacol ; 11: 1071, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765274

RESUMO

BACKGROUND: Currently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, causing an unprecedented pandemic. However, there is no specific antiviral therapy for coronavirus disease 2019 (COVID-19). We conducted a clinical trial to compare the effectiveness of three antiviral treatment regimens in patients with mild to moderate COVID-19. METHODS: This was a single-center, randomized, open-labeled, prospective clinical trial. Eligible patients with mild to moderate COVID-19 were randomized into three groups: ribavirin (RBV) plus interferon-α (IFN-α), lopinavir/ritonavir (LPV/r) plus IFN-α, and RBV plus LPV/r plus IFN-α at a 1:1:1 ratio. Each patient was invited to participate in a 28-d follow-up after initiation of an antiviral regimen. The outcomes include the difference in median interval to SARS-CoV-2 nucleic acid negativity, the proportion of patients with SARS-CoV-2 nucleic acid negativity at day 14, the mortality at day 28, the proportion of patients re-classified as severe cases, and adverse events during the study period. RESULTS: In total, we enrolled 101 patients in this study. Baseline clinical and laboratory characteristics of patients were comparable among the three groups. In the analysis of intention-to-treat data, the median interval from baseline to SARS-CoV-2 nucleic acid negativity was 12 d in the LPV/r+IFN-α-treated group, as compared with 13 and 15 d in the RBV+IFN-α-treated group and in the RBV+LPV/r+ IFN-α-treated group, respectively (p=0.23). The proportion of patients with SARS-CoV-2 nucleic acid negativity in the LPV/r+IFN-α-treated group (61.1%) was higher than the RBV+ IFN-α-treated group (51.5%) and the RBV+LPV/r+IFN-α-treated group (46.9%) at day 14; however, the difference between these groups was calculated to be statistically insignificant. The RBV+LPV/r+IFN-α-treated group developed a significantly higher incidence of gastrointestinal adverse events than the LPV/r+ IFN-α-treated group and the RBV+ IFN-α-treated group. CONCLUSIONS: Our results indicate that there are no significant differences among the three regimens in terms of antiviral effectiveness in patients with mild to moderate COVID-19. Furthermore, the combination of RBV and LPV/r is associated with a significant increase in gastrointestinal adverse events, suggesting that RBV and LPV/r should not be co-administered to COVID-19 patients simultaneously. CLINICAL TRIAL REGISTRATION: www.ClinicalTrials.gov, ID: ChiCTR2000029387. Registered on January 28, 2019.

4.
Nanotechnology ; 30(14): 145601, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30524021

RESUMO

The development of the tumor-targeting ability of nanocarriers is of paramount importance for gene delivery into tumor lesions as well as to avoid biotoxicity. Here we report the synthesis of the polyethyleneimine-fluorescein isothiocyanate-folic acid (PEI-FITC-FA) polymer, which could condense the tumor suppressor pp53 to form nanocomplexes. These targeted nanocomplexes exhibited favorable physical properties including a small size of <100 nm, exploiting the enhanced permeability and retention effect and tumor-targeting ability by binding to the overexpressed FA receptors on tumor cell surfaces. In addition, once the nanocomplexes are accumulating in the tumor tissue, the target functional ligand, FA, can selectively recognize the over-expressed FA receptor and subsequently remain on the tumor cell surface, which can significantly promote the tumor cell uptake because of the time- and concentration-dependent internalization caused by the enhanced interaction between nanocomplex and tumor cell. Our results indicated that PEI-FITC-FA/pp53 nanocomplexes could be efficiently delivered into tumor cells, and subsequently induce tumor cell apoptosis. Thus, the targeted cationic polymer PEI-FITC-FA could be used as an advanced nanocarrier for gene delivery.


Assuntos
Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/metabolismo , Nanoconjugados/química , Neoplasias/metabolismo , Proteína Supressora de Tumor p53/genética , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Ácido Fólico/química , Terapia Genética , Vetores Genéticos/farmacologia , Células HeLa , Células Hep G2 , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Tamanho da Partícula , Plasmídeos/genética , Plasmídeos/metabolismo , Polietilenoimina/química , Proteína Supressora de Tumor p53/metabolismo
5.
Bioconjug Chem ; 29(9): 2936-2944, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30148623

RESUMO

Melittin (MLT), as a natural active biomolecule, can penetrate the tumor cell membrane to play a role in cancer treatment and will attract more attention in future development of antitumor drugs. The main component of natural bee venom MLT was modified by introducing a pH-sensitive amide bond between the 2,3-dimethyl maleimide (DMMA) and the lysine (Lys) of MLT (MLT-DMMA). MLT and its corresponding modified peptide MLT-DMMA were used for antitumor and biocompatibility validation. The biomaterial characteristics were tested by MALDI-TOF MS, 1H NMR, IUPAC and HPLC, cell viability, hemolytic and animal experiment safety evaluation. Compared with the primary melittin, the modified peptide showed decreased surface charge and low cytotoxicity in physiological conditions. Moreover, cell assays confirmed the acid-activated conversion of amide bond resulting in adequate safety during delivery and timely antitumor activity in tumor lesions. Thus, MLT-DMMA provided a feasible platform to improve the targeted and safe antitumor applications.


Assuntos
Ácidos/química , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Meliteno/química , Meliteno/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Materiais Biocompatíveis , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Células HeLa , Hemólise/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Larva/efeitos dos fármacos , Anidridos Maleicos/química , Meliteno/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Peixe-Zebra/crescimento & desenvolvimento
6.
Theranostics ; 8(11): 3038-3058, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896301

RESUMO

Nanotechnology-based antitumor drug delivery systems, known as nanocarriers, have demonstrated their efficacy in recent years. Typically, the size of the nanocarriers is around 100 nm. It is imperative to achieve an optimum size of these nanocarriers which must be designed uniquely for each type of delivery process. For pH-responsive nanocarriers with programmable size, changes in pH (~6.5 for tumor tissue, ~5.5 for endosomes, and ~5.0 for lysosomes) may serve as an endogenous stimulus improving the safety and therapeutic efficacy of antitumor drugs. This review focuses on current advanced pH-responsive nanocarriers with programmable size changes for anticancer drug delivery. In particular, pH-responsive mechanisms for nanocarrier retention at tumor sites, size reduction for penetrating into tumor parenchyma, escaping from endo/lysosomes, and swelling or disassembly for drug release will be highlighted. Additional trends and challenges of employing these nanocarriers in future clinical applications are also addressed.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Liberação Controlada de Fármacos , Endossomos/química , Concentração de Íons de Hidrogênio , Lisossomos/química , Nanotecnologia , Tamanho da Partícula
7.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29500260

RESUMO

Pollutant degradation is present mainly in the surface layer of biofilms, and the surface layer is the most vulnerable to impairment by toxic pollutants. In this work, the effects of nanosized TiO2 (n-TiO2) on the average thicknesses of Bacillus subtilis biofilm and on bacterial attachment on different surfaces were investigated. The binding mechanism of n-TiO2 to the cell surface was also probed. The results revealed that n-TiO2 caused biofilm dispersal and the thicknesses decreased by 2.0 to 2.6 µm after several hours of exposure. The attachment abilities of bacteria with extracellular polymeric substances (EPS) on hydrophilic surfaces were significantly reduced by 31% and 81% under 10 and 100 mg/liter of n-TiO2, respectively, whereas those of bacteria without EPS were significantly reduced by 43% and 87%, respectively. The attachment abilities of bacteria with and without EPS on hydrophobic surfaces were significantly reduced by 50% and 56%, respectively, under 100 mg/liter of n-TiO2 The results demonstrated that biofilm dispersal can be attributed to the changes in the cell surface structure and the reduction of microbial attachment ability.IMPORTANCE Nanoparticles can penetrate into the outer layer of biofilm in a relatively short period and can bind onto EPS and bacterial surfaces. The current work probed the effects of nanosized TiO2 (n-TiO2) on biofilm thickness, bacterial migration, and surface properties of the cell in the early stage using the surface plasmon resonance waveguide mode. The results demonstrated that n-TiO2 decreased the adhesive ability of both cell and EPS and induced bacterial migration and biofilm detachment in several hours. The decreased adhesive ability of microbes and EPS worked against microbial aggregation, reducing the effluent quality in the biological wastewater treatment process.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/fisiologia , Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas/análise , Titânio/análise , Aderência Bacteriana , Matriz Extracelular de Substâncias Poliméricas/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
8.
Oncotarget ; 8(57): 97187-97205, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29228603

RESUMO

Hind-limb ischemia (HLI) is one of the major complication of diabetic patients. Angiogenesis potential in diabetic patients is severely disrupted, and the mechanism underlying it has not been fully elucidated, making it an obstacle for developing an efficient therapeutic angiogenesis strategy. Skeletal muscle cells, through their paracrine function, had been known to be critical for neoangiogenesis. Here we found that hyperglycemia upregulates the expression of skeletal muscle cells prolyl hydroxylase domain 3 (PHD3), which resulted in the decrease of the secretion of angiogenic factors, especially VEGF-A and PDGF-BB. We showed that treatment with salidroside, a small molecule drug, significantly suppresses PHD3 expression and increases VEGF-A and PDGF-BB secretion from skeletal muscle cells, which in turn enhances the proliferation and migration potentials of endothelial and smooth muscle cells. Finally, we demonstrated that intramuscular injection of salidroside into the ischemic hind limbs of diabetic HLI model mice could efficiently induce neoangiogenesis and blood perfusion recovery. Thus, our novel findings not only reveal the effects of hyperglycemia on the angiogenesis potential of skeletal muscle cells and the mechanism underlying it, but also provides a novel finding suggesting that salidroside might be a potential small molecule drug for diabetic HLI.

9.
Int J Nanomedicine ; 12: 5745-5760, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848351

RESUMO

Further specific target-ability development of biodegradable nanocarriers is extremely important to promote their security and efficiency in antitumor drug-delivery applications. In this study, a facilely prepared poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG)-folic acid (FA) copolymer was able to self-assemble into nanoparticles with favorable hydrodynamic diameters of around 100 nm and negative surface charge in aqueous solution, which was expected to enhance intracellular antitumor drug delivery by advanced dual tumor-target effects, ie, enhanced permeability and retention induced the passive target, and FA mediated the positive target. Fluorescence-activated cell-sorting and confocal laser-scanning microscopy results confirmed that doxorubicin (model drug) loaded into PLGA-PEG-FA nanoparticles was able to be delivered efficiently into tumor cells and accumulated at nuclei. In addition, all hemolysis, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, and zebrafish-development experiments demonstrated that PLGA-PEG-FA nanoparticles were biocompatible and secure for biomedical applications, even at high polymer concentration (0.1 mg/mL), both in vitro and in vivo. Therefore, PLGA-PEG-FA nanoparticles provide a feasible controlled-release platform for secure and efficient antitumor drug delivery.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Ácido Fólico/farmacologia , Nanopartículas/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Embrião não Mamífero/efeitos dos fármacos , Ácido Fólico/química , Células HeLa , Humanos , Ácido Láctico/química , Teste de Materiais , Nanopartículas/química , Nanopartículas/toxicidade , Polietilenoglicóis/química , Poliglactina 910 , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Coelhos , Sais de Tetrazólio , Tiazóis , Peixe-Zebra/embriologia
10.
Mol Med Rep ; 15(2): 712-718, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28000893

RESUMO

Hyperlipidemia is a risk factor for Alzheimer's disease (AD) and other neurodegenerative diseases. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a lipid regulatory gene involved in cell apoptosis. However, the function and mechanism of PCSK9 in neuronal apoptosis following hyperlipidemia remains to be elucidated. The present study established a hyperlipidemic mouse model by feeding a high­fat diet (HFD) to 6­week­old apoE(­/­) mice. Plasma lipid levels, hippocampal lipid accumulation, hippocampal histology, and hippocampal neuronal apoptosis were all monitored for changes. The expression levels of PCSK9, ß­secretase 1 (BACE1), B­cell lymphoma 2 (Bcl­2), Bcl­2­associated X protein (Bax), and caspase­3 in hippocampal CA3 and CA1 neurons were also measured. Results demonstrated that a HFD increased the lipid accumulation in the CA3 hippocampus and the levels of plasma lipids, including triglycerides, total cholesterol, low­density lipoprotein, and high­density lipoprotein. In addition, CA3 neurons in the HFD group indicated apparent injuries and increased neuronal apoptosis, which are associated with the expression of Bcl­2, Bax, and caspase­3. A HFD also increased the expression levels of PCSK9 and BACE1. BACE1 promotes cleavage of amyloid precursor proteins to generate ß­amyloid peptide (Aß), which induces neuronal apoptosis. Protein levels of Aß are associated with the observation of amyloid plaques in the hippocampus of the HFD group. The results suggest that hyperlipidemia regulates neuronal apoptosis by increasing PCSK9 and BACE1 expression. Overall, the current study may elucidate the role of lipid metabolism disorder in AD pathogenesis.


Assuntos
Apolipoproteínas E/genética , Apoptose/genética , Regulação da Expressão Gênica , Hiperlipidemias/fisiopatologia , Neurônios/metabolismo , Pró-Proteína Convertase 9/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Apolipoproteínas E/deficiência , Caspase 3/metabolismo , Colesterol/sangue , Dieta Hiperlipídica , Hipocampo/citologia , Hipocampo/metabolismo , Hiperlipidemias/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Neurônios/citologia , Pró-Proteína Convertase 9/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Triglicerídeos/sangue , Proteína X Associada a bcl-2/metabolismo
11.
Clin Chim Acta ; 460: 164-71, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27384386

RESUMO

MicroRNAs are a group of endogenously small non-coding RNA molecules that downregulate gene expression at the post-transcriptional level through binding to the 3'UTR of target mRNAs. Recent findings have revealed a key role for microRNAs in the pathophysiological processes of atherosclerosis. As a complex disease, atherosclerosis is influenced by a combination of multiple genes and environmental factors. Both of them play a role in atherogenesis by affecting different types of cells (such as endothelial cell, vascular smooth muscle cell and monocyte/macrophage) function. MicroRNAs control the senescence and dysfunction of endothelial cells, proliferation and migration of vascular smooth muscle cells, and macrophage-driven cytokine production and polarization. By these effects, microRNAs can influence the processes of atherosclerosis and may represent new molecular targets for therapy.


Assuntos
Aterosclerose/genética , MicroRNAs/fisiologia , Células Endoteliais/patologia , Humanos , Macrófagos/patologia , Terapia de Alvo Molecular/métodos , Músculo Liso Vascular/patologia
12.
J Plant Physiol ; 192: 28-37, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26812087

RESUMO

Higher plants need to balance the efficiency of light energy absorption and dissipative photo-protection when exposed to fluctuations in light quantity and quality. This aim is partially realized through redox regulation within the chloroplast, which occurs in all chloroplast compartments except the envelope intermembrane space. In contrast to the chloroplast stroma, less attention has been paid to the thylakoid lumen, an inner, continuous space enclosed by the thylakoid membrane in which redox regulation is also essential for photosystem biogenesis and function. This sub-organelle compartment contains at least 80 lumenal proteins, more than 30 of which are known to contain disulfide bonds. Thioredoxins (Trx) in the chloroplast stroma are photo-reduced in the light, transferring reducing power to the proteins in the thylakoid membrane and ultimately the lumen through a trans-thylakoid membrane-reduced, equivalent pathway. The discovery of lumenal thiol oxidoreductase highlights the importance of the redox regulation network in the lumen for controlling disulfide bond formation, which is responsible for protein activity and folding and even plays a role in photo-protection. In addition, many lumenal members involved in photosystem assembly and non-photochemical quenching are likely required for reduction and/or oxidation to maintain their proper efficiency upon changes in light intensity. In light of recent findings, this review summarizes the multiple redox processes that occur in the thylakoid lumen in great detail, highlighting the essential auxiliary roles of lumenal proteins under fluctuating light conditions.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Oxirredutases/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Cloroplastos/efeitos da radiação , Luz , Oxirredução , Tiorredoxinas/metabolismo , Tilacoides/metabolismo , Tilacoides/efeitos da radiação
13.
Ann Biomed Eng ; 42(9): 1978-88, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24838486

RESUMO

Vascular endothelial cell function responds to steady laminar shear stress; however, the underlying mechanisms are not fully elucidated. In the present study, we examined the effect of steady laminar shear stress on vascular endothelial cell autophagy and endothelial cell nitric oxide synthase (eNOS) and endothelin-1 (ET-1) expression using an ex vivo perfusion system. Human vascular endothelial cells and common arteries of New Zealand rabbits were pretreated with or without rapamycin or 3-MA for 30 min. These were then placed in an ex vivo cell perfusion system or an ex vivo organ perfusion system under static conditions (0 dynes/cm2) or steady laminar shear stress (5 or 15 dynes/cm2) for 1 h. In both ex vivo perfusion vascular endothelial cells and vascular vessel segment, steady laminar shear stress promoted autophagy and eNOS expression and inhibited ET-1 expression. Compared with steady laminar shear stress treatment alone, the pretreatment of autophagy inducer rapamycin obviously strengthened the expression of eNOS and decreased the expression of ET-1 in both the 5 and 15 dynes/cm2 treatment groups. Moreover, when pretreated with the autophagy inhibitor 3-MA, the eNOS expression was obviously inhibited and the ET-1 expression was reversed. These findings demonstrate that autophagy is upregulated under steady laminar shear stress, improving endothelial cell maintenance of vascular tone function.


Assuntos
Autofagia/fisiologia , Endotelina-1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Aorta/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Artéria Carótida Primitiva/metabolismo , Células Cultivadas , Endotelina-1/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Perfusão , Coelhos , Estresse Mecânico
14.
Water Res ; 57: 31-9, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24704902

RESUMO

Tightly bound extracellular polymeric substances (TB-EPS) play a substantial role on microbial aggregates, which can promote microbial cells to aggregate and adhere onto the carrier in bioreactor. However, the attachment and adsorption of TB-EPS on different surfaces were awaited to be elucidated. In this study, four self-assembled monolayers (SAMs) carrying methyl (CH3-SAM), amino (NH2-SAM), hydroxyl (OH-SAM), and carboxyl (COOH-SAM) terminal groups were prepared to model different surfaces. TB-EPS adsorption on these surfaces under different pH conditions and additional cations were investigated using surface plasmon resonance. The adsorption of TB-EPS dramatically decreased with the decreasing pH values. CH3-SAM surface achieved the maximum adsorption at the same condition. Na(+) promoted the TB-EPS adsorbed on COOH-SAM surface. The Ca(2+)-mediated complexes were attracted by COOH-SAM and repelled by NH2-SAM, respectively. The adsorptions of TB-EPS on the four SAM surfaces were significantly increased by adding Fe(3+). These results demonstrated that the TB-EPS adsorption on the organic surfaces were dependent on the pH and cation of solution.


Assuntos
Polímeros/química , Poluentes Químicos da Água/química , Adsorção , Reatores Biológicos , Cátions/química , Concentração de Íons de Hidrogênio , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
15.
Biomed Rep ; 2(2): 167-171, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24649090

RESUMO

Neuronal apoptosis is crucial in neurodegenerative diseases. However, a lower apoptotic rate of nerve cells is detected in the brain compared to that in other organs in neurodegenerative patients or in animal models, suggesting that neuronal apoptosis induced by any type of risk factors is intricately regulated. Human and animal studies demonstrated that a high concentration of oxidized LDL (ox-LDL) in the brain, which is associated with hyperlipidemia, is one of the key apoptosis inducers in neurodegenerative diseases. However, the mechanism underlying the ox-LDL-mediated regulation of neuronal apoptosis has not been fully elucidated. Recently, we investigated proprotein convertase subtilisin/kexin type 9 (PCSK9), a striking gene involved in lipid metabolism that exhibits a positive correlation with macrophage and endothelial cell apoptosis induced by ox-LDL. Moreover, PCSK9 may degrade ß-site amyloid precursor protein-cleaving enzyme 1 (BACE1), the key enzyme cleaving amyloid precursor protein (APP) to generate amyloid ß peptide (Aß). Aß is another key apoptosis inducer in neurodegenerative diseases. Our findings indicated that PCSK9 may be upregulated by the high levels of ox-LDL in the brain associated with hyperlipidemia and promote neuronal apoptosis through the NF-κB-B-cell lymphoma 2 (Bcl-2)/Bax-caspase 9-caspase 3 signaling pathways. Moreover, increased PCSK9 levels may inhibit the APP/Aß metabolic pathway and reduce Aß generation by degrading BACE1, thereby decreasing Aß-induced neuronal apoptosis. The dual regulation mechanism of PCSK9 on apoptosis maintains neuronal apoptosis induced by risk factors at low levels.

16.
Lipids ; 48(6): 579-86, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23674170

RESUMO

Oxidized lipoprotein(a) (oxLp(a)) is a more potent marker of atherogenesis than native Lp(a). However, the molecular mechanisms of oxLp(a) activity are not clear. Reactive oxygen species (ROS) have recently been suggested as acting as intracellular second messengers. In this study, the effects of oxLp(a) on endothelial cell monolayer permeability and the role of reactive oxygen species (ROS) generation in these effects were investigated. Our results showed that oxLp(a) inhibited desmoglein-1 (DSG1) and desmocollin-2 (DSC2) expression at both mRNA and protein levels in a dose- and time-dependent manner, and increased the generation of cellular ROS. Down-regulation of DSG1 and DSC2 was strengthened by pretreatment with H2O2 and attenuated by superoxide dismutase (SOD) treatment. Furthermore, oxLp(a) increased endothelial cell monolayer permeability, and this effect was enhanced by H2O2 and blunted by SOD. Taken together, these results demonstrate that oxLp(a) increases endothelial cell monolayer permeability, which is mediated at least in part via ROS generation.


Assuntos
Células Endoteliais/metabolismo , Lipoproteína(a)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Desmocolinas/genética , Desmocolinas/metabolismo , Desmogleína 1/genética , Desmogleína 1/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Oxirredução , Permeabilidade , Superóxido Dismutase/metabolismo
17.
Yi Chuan ; 35(4): 502-10, 2013 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-23659941

RESUMO

With the development of space life science, a study on the influence of microgravity on organism has been an increasingly concerned topic. Lots of studies indicate that microgravity plays an important role in the early development of embryos. The vascular system as the first-function system of embryos provides an interesting topic for many researchers. However, those studies were mostly carried out in vitro by rotary cell culture system (RCCS), while few experiments were done in vivo. Using zebrafish as a model, this research investigated the effects of horizontal rotary culture on the vascular development in vivo. Zebrafish embryos at 24 hpf (hour post-fertilization) were selected and divided into two groups. One group was cultured by the shaker, and the other was cultured normally as the control. After 12 h, all the embryos were collected and detected. The phenotype of zebrafish was observed by stereo microscope. Then, the expression of vascular specific expression factor, flk1, flt4, and ephrinB2 was compared by RT-PCR, qPCR, and in situ hybridization, respectively. Cell apoptosis and proliferation in situ were observed using TUNEL assay and bromodeoxyuridine incorporation. The results demonstrated that horizontal rotary culture at 90 r/min decreased the hatching of embryos (10.3±0.41 vs. 0.0, P<0.05), accelerate the heart rate (223.5±2.32 vs. 185.0±3.23, P<0.05) and increased the content of melanin in zebrafish significantly. At the same time, we found some differences in the vascular system of zebrafish after horizontal rotary culture which caused a down regulation of flk1, flt4, and ephrinB2. On the other hand, horizontal rotary culture accelerated the apoptosis of cells in zebrafish, but showed no significance in proliferation. In conclusion, horizontal rotary culture has a significant influence on the vascular development in zebrafish.


Assuntos
Vasos Sanguíneos/embriologia , Técnicas de Cultura/métodos , Rotação , Simulação de Ausência de Peso/métodos , Peixe-Zebra/embriologia , Animais , Apoptose , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento
18.
Int J Mol Med ; 31(2): 400-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23229094

RESUMO

The activation of endothelial cells by oxidized low-density lipoprotein (ox-LDL) with subsequent increases in endothelial permeability occurs in the early stage of atherosclerosis. Cathepsin L (CATL) is one of the cysteine proteases and has been implicated in advanced atherosclerotic lesions and plaque instability. This study aimed to explore the role of CATL in ox-LDL-induced early atherosclerotic events and to delineate the underlying mechanism. Results showed that ox-LDL upregulated CATL protein levels and activation in human umbilical vein endothelial cells (ECs) in a concentration-dependent manner and stimulated EC autophagy and apoptosis and increased EC monolayer permeability. Concomitantly, VE-cadherin expression was decreased. When ECs were pretreated with a CATL inhibitor, ox-LDL-induced autophagy was inhibited while apoptosis was further increased. In addition, the VE-cadherin protein level was increased, and the EC monolayer permeability was reduced. Taken together, the present study showed that the upregulated expression and activation of CATL induced by ox-LDL, increased EC autophagy and antagonized EC apoptosis, which partly neutralized the effect of increased EC monolayer permeability mediated by the downregulation of VE-cadherin. Thus, the proatherogenic effect of CATL was partly neutralized by inducing autophagy and inhibiting apoptosis in early stages of atherosclerosis.


Assuntos
Catepsina L/metabolismo , Células Endoteliais/enzimologia , Lipoproteínas LDL/metabolismo , Antígenos CD/metabolismo , Apoptose/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Autofagia/efeitos dos fármacos , Caderinas/metabolismo , Catepsina L/antagonistas & inibidores , Catepsina L/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Ativação Enzimática , Células Endoteliais da Veia Umbilical Humana , Humanos , Permeabilidade/efeitos dos fármacos , Inibidores de Proteases/farmacologia , RNA Mensageiro/genética , Regulação para Cima
19.
Mol Gen Mikrobiol Virusol ; (4): 14-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23248847

RESUMO

Mannanases can be useful in the food, feed, pulp and paper industries. In this research a Bacillus subtilis strain (named Bs5) which produced high-level beta-mannanase was isolated. Maximum level of beta-mannanase (1231.41 U/ml) was reached when Bacillus subtilis Bs5 was grown on konjac powder as the carbon source for nine hours at 32 degrees C. The beta-mannanase was a typical cold-active enzyme and its optimal temperature of 35 degrees C was the lowest among those of the known mannanases from bacteria. In addition, the optimal pH was 5.0 and much wide pH range from 3.0-8.0 was also observed in the beta-mannanase. These properties make the beta-mannanase more attractive for biotechnological applications. The DNA sequence coding the beta-mannanase was cloned and the open reading frame consisted of 1089 bp encoding 362 amino acids. A phylogenetic tree of the beta-mannanase based on the similarity of amino acid sequences revealed that the beta-mannanase formed a cluster with the beta-mannanases of Bacillus subtilis, which was separated from the mannanases of fungi and other bacteria. The beta-mannanase gene could be expressed in Escherichia coli and the recombinant beta-mannanase was characterized by Western blot. This study provided a new source of carbohydrate hydrolysis enzyme with novel characteristics from Bacillus subtilis.


Assuntos
Bacillus subtilis/enzimologia , Estabilidade Enzimática , beta-Manosidase , Clonagem Molecular , Temperatura Baixa , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Análise de Sequência de DNA , Temperatura , beta-Manosidase/química , beta-Manosidase/genética , beta-Manosidase/metabolismo
20.
Yi Chuan ; 34(9): 1123-32, 2012 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-23017453

RESUMO

Embryonic vascular system development is a complex process, whose progress is regulated by a variety of the stimulation and inhibition signals, and these signals must play synergistic effect so as to ensure that each stage of vascular development can proceed normally. The vascular development is controlled by the gene to a certain extent, and has received extensive attention. Recent studies have revealed the biomechanical role is necessary to embryonic vascular development, in which different mechanism of cell biomechanics is involved. In this review, we summarize the latest research progress on the role of biomechanical factors during embryonic vascular system development.


Assuntos
Vasos Sanguíneos/embriologia , Vasos Sanguíneos/fisiologia , Animais , Artérias/embriologia , Fenômenos Biomecânicos , Adesão Celular , Diferenciação Celular , Movimento Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Veias/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...